

State of the Art of Modern Tire Testing

Stefan Dengler SDS Systemtechnik GmbH Germany info@sds-systemtechnik.de

CONTENTS

- Introduction
- Interferometric Tire Inspection "Milestones"
- State of the Art Tire Testing with SDS
 - Shearography
 - Automated Pressure Testing
- CMS Contour Measuring System
- Laser Marking Systems

Curriculum Vitae - Stefan Dengler

- *born* 1963 in Calw-Stammheim
- Apprenticeship for Mechanics at Daimler Benz AG
- 1990 graduated as a *Mechanical Engineer* from University of Applied Sciences Esslingen
- 1990-1997 *Employee* in the field of Engineering, Marketing and Sales
- 1992 Start with *Consulting Engineer Office (IBD)*, doing construction and manufacturing of components for tire test systems and other applications
- 1998 Foundation of *SDS Systemtechnik GmbH*

SDS Product Range

Interferometric Tire Tester in the Production, R&D, Test Labs, Racetrack, for new tire production and retreading of all type of tires

Laser Marking Systems in the truck tire retreading and with Automotive Manufacturer (Testing) Handheld-Systems for OTR and Agriculture Tire Industry semi- and fully automated systems for OEM applications

2-D Measuring Systems and Color Detection -Profile Measurement offline and inline for thickness, width, variation, symmetry, comparison of nominal and real profile in extrusion and calander applications Inline Tread Length Measurement systems, Splice verification, ... Color Line Detection inline and offline Layer Check System

3-D Contouring Systems -

PTS - pressure test system for casing inspection in the Retread Industry

EMS - monitoring system for durability test, high speed test,

CMS - automatic wear measurement of Aircraft Tire

From **Construction** over **Production** to the **Final Product**

out of "one Hand" !

Installation to After Sale Support together with the Worldwide SDS Network

SDS facility Southwest of Germany (~ 30km from Stuttgart)

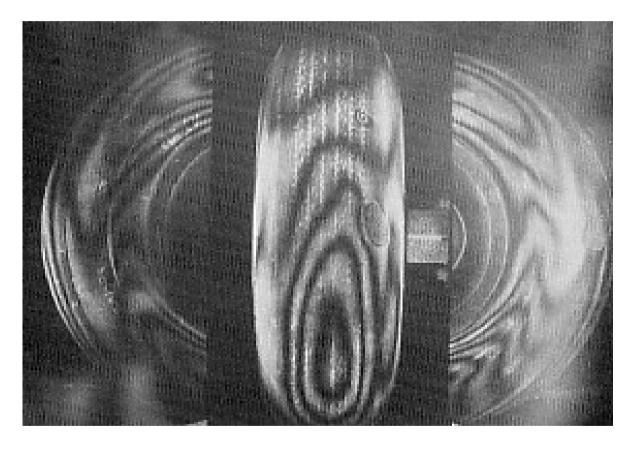
Administration, assembling and production (total 3000m²)

22 employees at SDS in Germany:

- 5 administration and after sales support
- 4 construction and development (soft- and hardware)
- 10 production and assembly, installation and support
- 3 apprentices (electro mechanics and commercial)

1 employee in Shanghai, China for sales and support

Today more then 500 installed systems..



Interferometric

Tire Inspection

"Milestones"

Dennis Gabor 1971 first double puls Hologram of a tire (Goodyear, Akron)

1973

IHI (USA) designed the first Holographic Tire Tester (+ \$ 500.000) with film and gas-laser

Test time: 10 min/tire + long relaxation

Tires must be manually spreated

Manual tire loading and centering with crane

Manual positioning of measuring head

Chemical processing of the film and offline verification

1993

LTI (USA) developed the first shearing interferometer with electronic camera Test time: 8 min/tire (bead to bead) Manual loading by rolling in/out

The filmless system reduced the cost per tire significant

Bead to bead inspection with vertical test position of the tire!

1998 SDS started with the serial production of industrial tire test systems

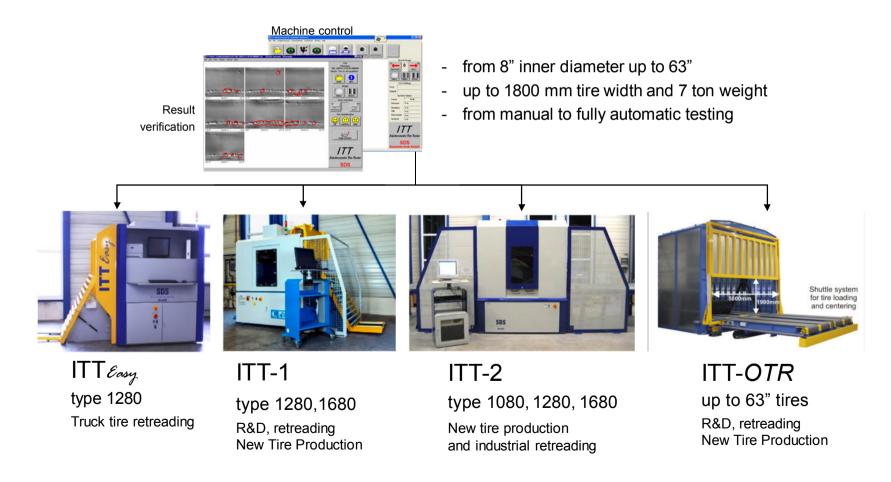
Vergölst, Bad Nauheim

At that time one of the largest retreaders in Europe

For initial inspection and partly final inspection

Test time: 2 min/tire crown only 5 min/tire bead to bead

Innovation:


Introduction of multiple laser diodes to minimize operation cost and downtime

Automated tire handling with conveyor system Automatic positioning of measuring head

Barcode System to identify production number for archiving and traceability

Interferometric **T***ire* **T***ester* for all tire applications:

ITT systems in new tire applications and retreading: (1998 – April 2018)

<u>New tire + R&D</u>	35 Aviation tire 147 Truck tire	
<u>scrapt machines</u>	5 OTR tire only 6 since 20 years !	

Application and "location" of ITT systems:

Europe	105 Retread29 New Tire11 Aviation	<i>3,6x</i>	Germany + Austria	32 Retread7 New Tire0 Aviation
USA + Canada + Mexico	150 Retread29 New Tire10 Aviation	<i>5,2x</i>		
Japan	4 Retread8 New Tire1 Aviation	2,0x		
China	2 Retread39 New Tire5 Aviation	19,5x		

"state of the art" tire testing

with SDS

With "State of the Art" in Shearography

the focus goes to:

- Cost per tire

- Test capacity or cycle time per tire

and

- Standardization of test conditions and validation

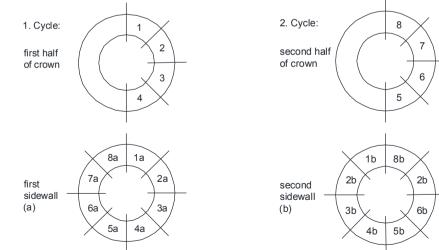
- Automated material, test - and result handling

Cycle Time per Tire

previously **film-based** Interferometry and Shearography with B/W film

today film-less "Speckle-Shearing" with digital cameras

- No chemical process with film
- Instant test result directly after test is completed
- Short exposure time and fast data transfer with CMOS and GigE
- Automatic tire handling and multiple cameras (and machines)


Cycle time: (bead to bead)	1973 ~ 10 min	(not including film processing, offline		
· · · · ·	1998 ~ 6 min			
	2018 ~ 1 min	(Twin machine setup)		

Twin machine : less than 1min per Tire, bead to bead

- 2 Triple head machines
 1x center camera
 for crown only, no tilt
 2x sidewall cameras
- Turn over fixture between

Inspection Cost per Tire

previously Interferometry and Shearography with Gas-Laser
> This was High tech for physicist today electronic "Speckle-Shearing" with CMOS camera and Laser-Diodes
> still High tech but low skill

No consumables (film, chemicals, etc.)
Less maintenance, less downtime
Less electric energy consumption for laser: ~ 20 kW -> ~ 1 W vacuum system: ~ 4.6 kW -> ~ 2 kW
Longer laser lifetime: from ~3000h today typically more than 2000h

Cost per tire: 1973 ~ 10,00 € (not including depreciation)

1998 ~ **0,05** € **to 0,15** € (converted from DM)

2018 ~ 0,02 € to 0,05 €

Standardization of test procedure and validation

To get a reproducible test result:

- test conditions and parameters have to be defined and controlled

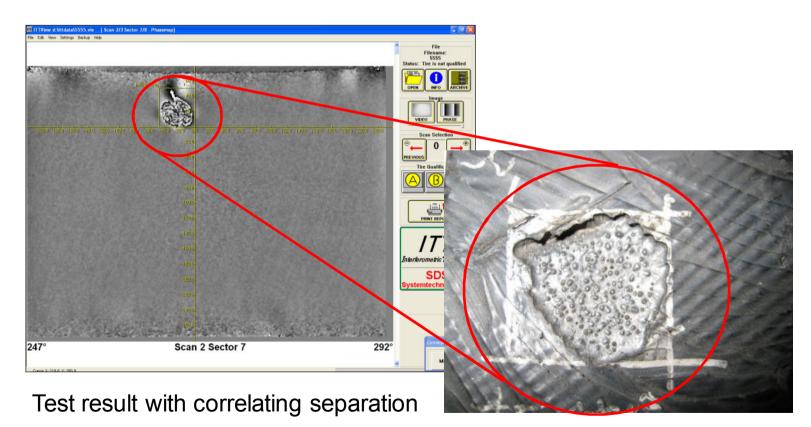
(within one organization or even in the industry)

SDS provide Automated Processes

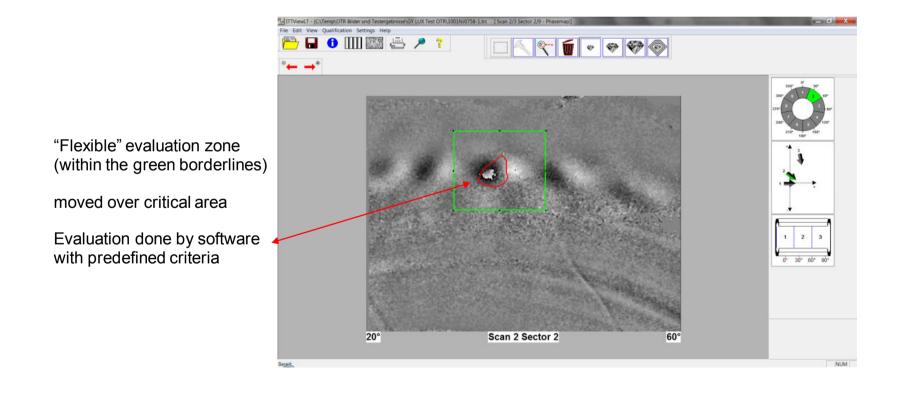
To get a reproducible validation

- Criteria have to be defined ("anomaly library")
- Operators have to be skilled

SDS provide Automated Evaluation

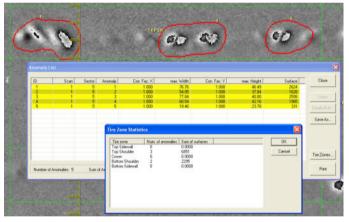

to reduce variance of manual measurement

How to do a traceable


and repeatable validation of a test result ?

Simplified Solution for an operator independent evaluation


by an automated validation of anomalies by Software

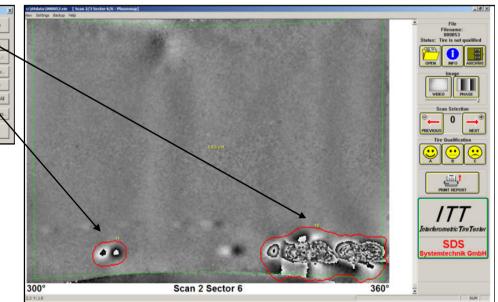


or fully automatic detection of anomalies by Software

Automatic Anomaly Detection (AAD) with specific tire zones

Detected anomalies with

- ✓ Always correct scaled dimensions
- \checkmark Correct assignment to tire zone
- ✓ Individual criteria depending on zone

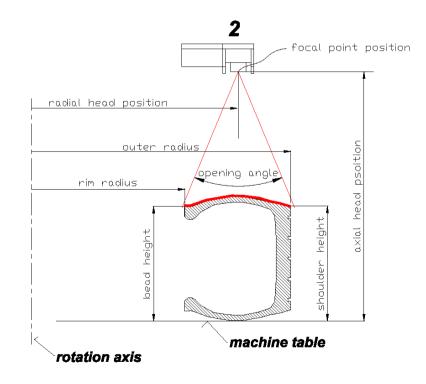

The step into an **automated processing**

for a repeatable and traceable validation

D	Scan	Sector	Anomaly	Con. Fac. X	max, Width	Con Fac, Y	max. Height	Surface T	Close
10	2	6	1	200.000	203.1	1.000	0.4427	70.60	
9	2	5	1	200.000	177.1	1.000	0.3969	52.95	
2	2	1	1	200.000	102.3	1.000	0.4275	31.97	
6	2	3	2	200.000	103.8	1.000	0.4122	30.01	
1	1	6	1	100.000	98.0	1.000	0.7550	24.35	
8	2	4	2	200.000	113.0	1.000	0.2748	24.11	D Claim Lot
3	2	2	1	200.000	76.3	1.000	0.3130	19.57	Save As
5	2	3	1	200.000	82.4	1.000	0.3206	19.51	
7	2	4	1	200.000	50.4	1.000	0.3740	13.89	
11	2	6	2	200.000	53.4	1.000	0.2061	913	
4	2	2	2	200.000	50.4	1.000	0.1985	9.13 8.24	\ <u> </u>
									Delete All
									Tire Zores.

Findings are listed in a table:

- automated classification
- sorting on conveyor
- statistical evaluations, etc:

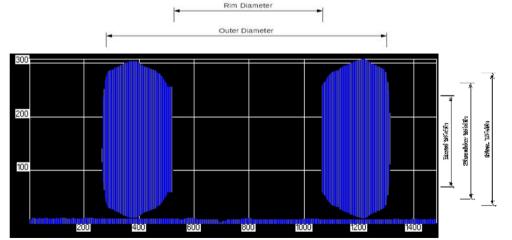


For a fully automatic detection of anomalies with tire zones

the contour of every tested tire is required

Calculation of tire contour based on:

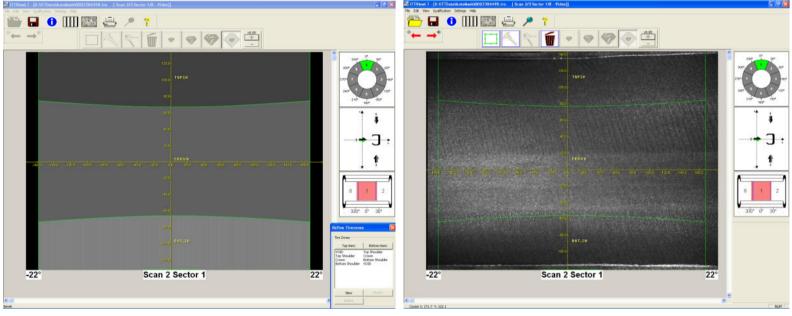
- Tire data
 - Rim radius
 - Outer radius
 - Bead height
 - Shoulder height
- Machine parameter
 - Opening angle of viewing field (lens)
 - Camera position relative to tire center



Automatic Tire Contour Detection (TCD)

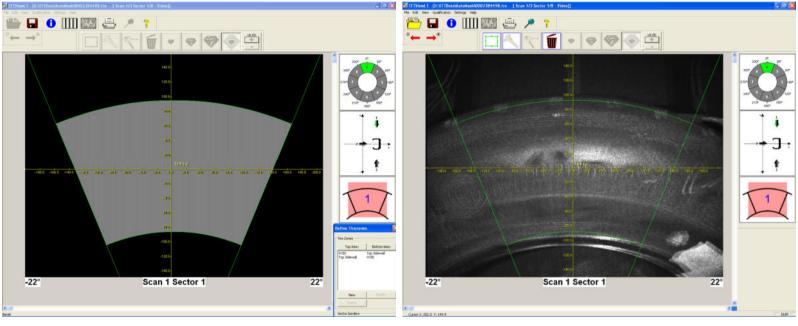
- Verification before loading into tire test system
- Interface with process control to match tire information for test result handling
- Measuring complete tire contour for
 - Correct positioning of all cameras (triple head bead to bead operation)
 - Calculation of evaluation zones for Automatic Anomaly Detection (AAD)

TCD module attached to vacuum chamber



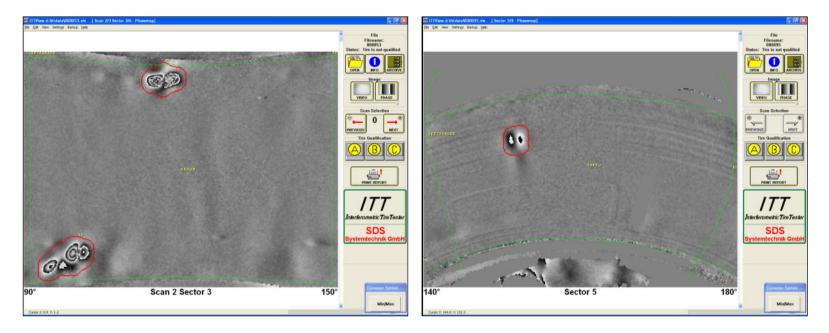
Result of contour measurement with computed main dimensions for positioning

Computation of tire zones in crown scan


Tire zones crown

Tire zones crown superpositioned over sector image

Computation of tire zones in sidewall scan


Tire zones sidewall

Tire zones crown superpositioned over sector image

Automatic Anomaly Detection combined with Tire Contour Detection

Tire zones for crown and sidewall superpositioned over sector image

- for automated evaluation with different criteria
- for eliminating overlap in automatic evaluation

Automatic Anomaly Detection combined with Tire Contour Detection

- \checkmark Head positioning is adapted to each individual tire
- ✓ All results are calibrated
- ✓ All results show correct location of tire zones (crown, shoulders, sidewalls)
- ✓ Automatic anomaly detection is executed tire zone specific
- ✓ Avoidance of anomaly detection outside regions of interest

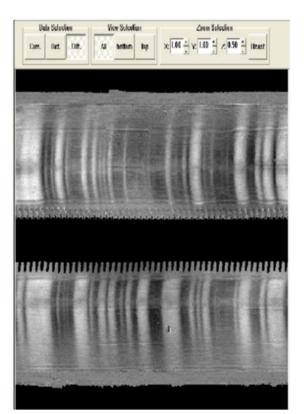
ATTENTION: Interferometric Tire Testing can **NOT** eliminate a visual inspection!!

These indications are open to atmosphere The vacuum can not cause a deformation !

⇒ The ITT will show no anomaly !!

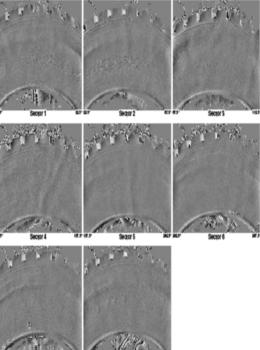
automated Pressure Test System

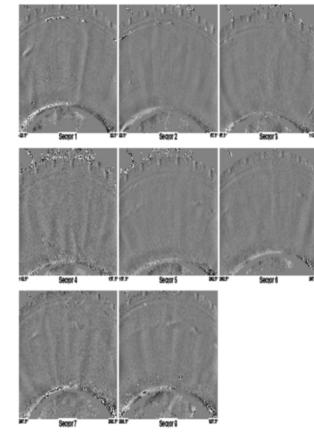
for Structure Testing of Casings


With all the advantages – Shearography has some restrictions

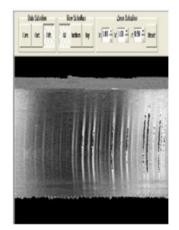
Limited sensitivity to <u>structural</u> defects, because:

- they are often open to the atmosphere
- they do not necessarily cause separations or they are not large enough to be detected
- the structure is not stressed during test




Comparison ITT – PTS Results

- Clear indication of broken/fatiguing cables in both sidewalls with PTS



- Some minor shadows in the ITT- result of the sidewall,

Comparison ITT – PTS Results

- Clear indication of broken/fatiguing cables in the same sidewall with PTS

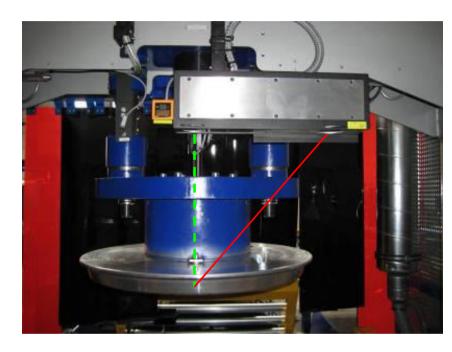
Scope of Inspection (ECE 109, 6.7.2. structural test during process)

- Detect structural anomalies in casings,
 - such as fatigue, broken cables, ..
- Verify tire repairs structure of repaired area
- Geometrical measurement such as run-out, diameter,...

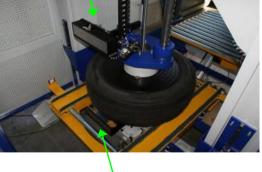
but

- Non contacting (by operator)
- With lower test pressure (max. 4bar)
- With a traceable test result: stored, printed etc.
- Automated, could be inline with an ITT

Automatic Pressure Tester "PTS"

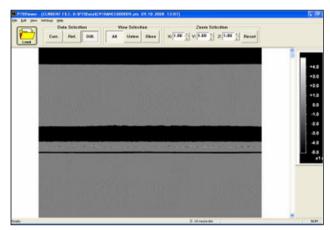

PTS stand alone with pneumatic loader/unloader

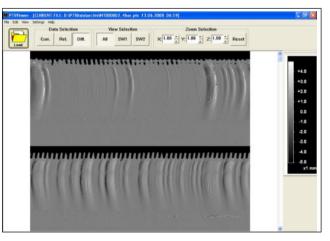
PTS inline with an ITT


SDS - Systemtechnik -GmbH

Triangulation with projected line "Sheet of Light" - Triangulation

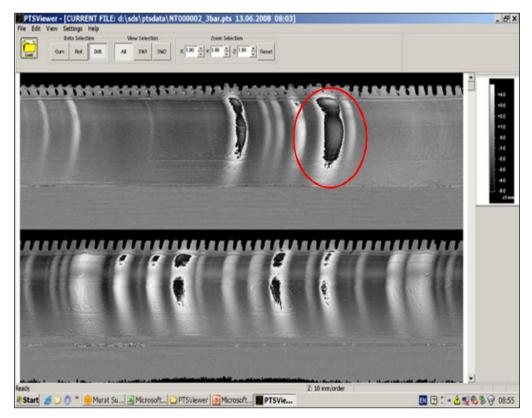
Camera Line-Laser

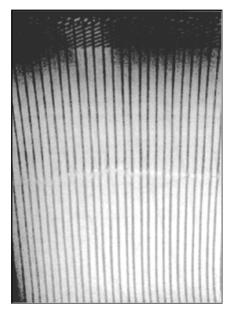

> upper measuring system


lower measuring system

Data from both sidewalls are displayed together in one view (optional tread measurement will be display between the sidewalls) and the deformation (z) displayed with a "grey scale"

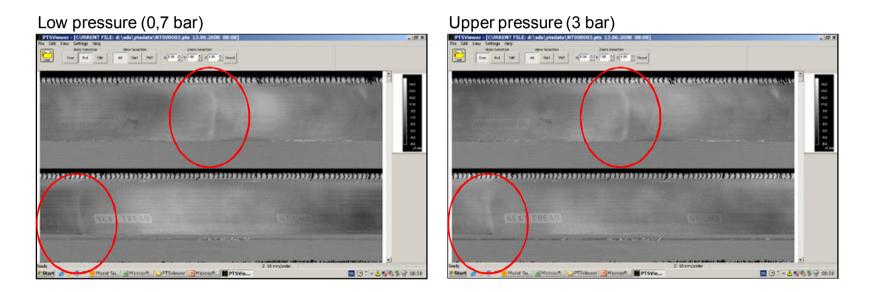
An intact casing structure makes a steady grey scale dispersion.


SDS - Systemtechnik GmbH


A defect casing structure causes an deformation in the sidewall, displayed by a changing of the grey value

Multiple broken steel cords:

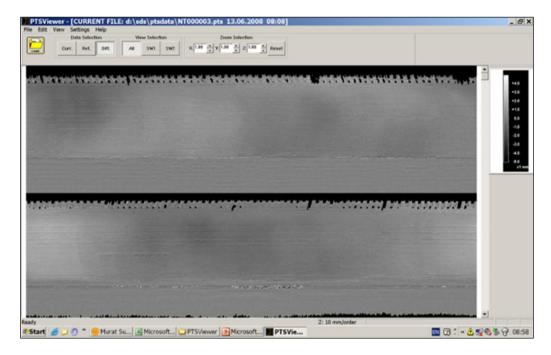
The test result is indicating fatigue causing a zipper-failure in the inflated tire

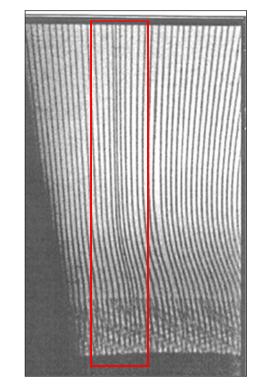


X-Ray result from the marked area showing fatiguing and broken steel cords.

Upper sidewall with local strong deformation and lower sidewall with deformation around the complete sidewall

SDS - Systemtechnik -GmbH


Other Sidewall Indications



- This bulge is visible on the tire sidewall
 => typically it will be read as kinked cables and the tire is scrapped
- With the PTS with low and high pressure a slight bulge is also indicated

But in the result image no anomalies are visible
 => no indication for a structural defect

=> This casing is ok

 The X-Ray result is showing too narrow cables causing the sidewall indication

SDS - Systemtechnik -GmbH

Thank you for your attention !!

SDS - Systemtechnik - **GmbH**

- Focused on customer's ideas and needs

- Staying ahead with leading edge technologies
- Available and responsible

for more information see us in hall 9 at booth 8017 - 8019